[대학원] 서울시립대 생명과학과 엄성현 석사 Journal of Hazardous Materials 논문 게재 및 한빛사 소개
엄성현 석사가 Journal of Hazardous Materials (IF: 14.224) 2024년 3월호에 "Microplastic-induced inhibition of cell adhesion and toxicity evaluation using human dermal fibroblast-derived spheroids " 주제로 논문을 게재하고 한빛사에 소개되었습니다.
이 연구에는 심우성 석사 (박사과정 진학)도 공동저자로 참여하였습니다.
축하합니다!!!
출처: https://doi.org/10.1016/j.jhazmat.2023.133359
https://www.ibric.org/bric/hanbitsa/treatise.do?mode=treatise-view&id=92014&authorId=41481#!/list
이 연구에는 심우성 석사 (박사과정 진학)도 공동저자로 참여하였습니다.
축하합니다!!!
출처: https://doi.org/10.1016/j.jhazmat.2023.133359
J. Hazard. Mater., Dec 28 2023, 465 S0304-3894(23)02643-2 | https://doi.org/10.1016/j.jhazmat.2023.133359Microplastic-induced inhibition of cell adhesion and toxicity evaluation using human dermal fibroblast-derived spheroids
Authors and Affiliations
Abstract
Nanoplastics and microplastics (MPs) can significantly affect marine ecosystems and pose potential risks to human health. Although adverse effects stemming from direct exposure to MPs have been demonstrated at the cellular level in animal models, the potential toxicity of these materials in the human body remains uncertain. In this study, we investigated the three-dimensional (3D) behavior of dermal-derived cells exposed to MPs using artificially manufactured spherical primary polystyrene (PS) particles. To explore these effects, we used cellular spheroids as a 3D cell culture model, examined the size-dependent penetration of PS-MPs, and observed morphological alterations in the spheroids. Furthermore, we assessed changes in physiological activities, including reactive oxygen species, adenosine triphosphate, and lactate dehydrogenase, to elucidate the potential intra- and extracellular toxic reactions to PS-MPs. Additionally, our examination of cell-cell junctions and the extracellular matrix (ECM), along with analysis of the regulators involved in their decreased integrity, revealed negatively influenced changes in expression. This exposure study using spheroid models provides new insights into the potential toxicity of short-term exposure to MPs under conditions that closely resemble in vivo systems.
논문정보
- 형식Research article
- 게재일2023년 12월 (BRIC 등록일 2024-01-05)
- 연구진국내 연구진
- 분야 바이오·의료융합 > 바이오센싱 및 나노바이오물질
https://www.ibric.org/bric/hanbitsa/treatise.do?mode=treatise-view&id=92014&authorId=41481#!/list